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Exactly solvable path integral for open cavities in terms of quasinormal modes

Alec Maassen van den Brink*
Department of Physics, The Chinese University of Hong Kong, Hong Kong, China

~Received 26 May 1999; revised manuscript received 30 September 1999!

We evaluate the finite-temperature Euclidean phase-space path integral for a scalar field in a leaky cavity. If
the source is confined to the cavity, after integrating out the environment one can expand the ensuing effective
cavity action in terms of thequasinormal modes~QNMs!—the exact, damped eigenstates of the classical
evolution operator, known to be complete for a large class of models. Dissipation makes the effective-action
matrix nondiagonal in the QNM basis. Its inversion in the Gaussian path integral for the generating functional
thus is nontrivial, but feasible using a novel QNM sum rule. The results are consistent with those of canonical
quantization.

PACS number~s!: 05.30.Ch, 02.30.Mv, 11.10.Wx, 42.60.Da
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I. INTRODUCTION

Open systems have been amply studied both in class
and quantum physics: e.g., optics—cavity QED@1# appli-
cable to laser physics@2# or microdroplets, the spherica
analog—and solid-state physics, where Josephson@3# and
Kondo phenomena@4#, etc., all allow a ‘‘system-bath’’ de-
scription. The concept is also relevant to acoustics~e.g.,
sound emanating from musical instruments! and on a very
different scale to gravitational astrophysics@5#.

In several papers, we have studied open wave syst
„Eq. ~2.1! with a nontrivial mass densityr(x) below or,
equivalently @6#, the Klein-Gordon equation@] t

22]x
2

1V(x)#c50…. The waves propagate in a ‘‘universe’’: a
open ‘‘cavity’’ plus an infinite ‘‘outside’’ ~the bath!. Dissi-
pation is caused by leakage from the former to the latter@7#.
Under conditions specified later, the discrete set of ca
resonances orquasinormal modes~QNMs!—exponentially
decaying eigensolutions of the~non-Hermitian! evolution
operator—is complete in the cavity and hence can be u
for exact expansions. This eliminates the outside from
description, and one no longer has to deal with the dense
of modes of the universe~MU!. In terms of these QNMs, on
can establish a formalism which closely parallels the us
one for conservative, Hermitian systems. Applications
clude perturbation theory and, of particular interest here,~ca-
nonical! second quantization@8,9#. For a review, see Ref
@10#.

Of course, there are many other ways to eliminate
bath, leading to, e.g., Langevin and master equations@2,11#.
Especially suited for open quantum systems is the path i
gral @4,12#, which one first writes down for the generatin
functional ~or density matrix! of the universe. The pertinen
action follows from the Hamiltonian. One then performs t
integral over the bath only, in which the system variab
figure as constants. Since the bath is usually taken harm
~in fact, for a meaningful separation into system plus b
one needs this or some other simplifying property!, this can
be done exactly. In the remaining path integral over
damped system variables, theeffective actionaccounts for
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the environment in a way guaranteed to be consistent w
quantum mechanics~i.e., not merely phenomenological!.
This is a convenient starting point for approximations, qua
tative analysis, or numerics.

This paper synthesizes the QNM and path-integral
proaches to open wave systems. In Sec. II we review
classical QNM series. In Sec. III we present the path integ
since our ultimate interest is in the cavity fields, the source
chosen to couple to those only, facilitating the elimination
the bath. The form of the ensuing effective action’s damp
term is still well known, and QNM expansion in Sec. I
combines the merits of an effective action with those o
discrete basis@10#. If not only the bath but also the cavity i
harmonic, a sum rule, also derived, now enables the ca
integral over the expansion coefficients to be performed.~For
nonlinear actions, this step is the starting point for pertur
tion theory; see Sec. VI.! Since the action is bilinear and th
QNMs are not orthogonal in the usual sense, this means
verting a nondiagonal infinite matrix~in contrast to the bath
integral, which can be done for each degree of freedom se
rately!. The result agrees with that of canonical quantizatio
both yield the same correlators. While the systems in R
@3,4,12# typically have few degrees of freedom, only thei
baths being essentially infinite, this paper carries out
analogous program for a dampedfield. In Sec. V we consider
a source coupling to the field but not to its momentum. Th
the action matrixcan be made diagonal; this parallels th
canonical approach. While the resulting formulas look si
pler, some pitfalls are pointed out. Closing remarks are m
in Sec. VI.

II. CLASSICAL FIELDS

For closed linear systems, eigenfunction expansio
based on the normal modes~NMs! of the evolution operator,
are a vital tool. However, in open systems, any state w
decay, so NMs do not exist. Consider the real scalar o
dimensional wave equation in a cavity 0<x<a,

r~x!] t
2f5]x

2f, ~2.1!

with a node

f~x50,t !50 ~2.2!

at one end but with the outgoing-wave condition~OWC!
y

2367 ©2000 The American Physical Society
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2368 PRE 61ALEC MAASSEN van den BRINK
f8~a1,t !52ḟ~a,t ! ~2.3!

at the other. The OWC means that, just outside the cav
f(x,t)5f(x2t); it is stated ata1, since for many models a
singularity in r(x5a) can cause a jump inf8(x) @13#.
Equation~2.3! renders the cavity leaky but not absorptive
The QNMs readf(x,t)5 f j (x)e2 iv j t, with

@]x
21r~x!v j

2# f j50, f j~0!50, f j8~a1!5 iv j f j~a!.
~2.4!

One easily verifies that Imv j,0, soe2 iv j t is indeed decay-
ing. The frequenciesv j , ordered according to increasing rea
parts, are spaced byDv;p/a, roughly as for closed systems
of size a. They occur in pairsv2 j52v j* ~unless Rev j

50), and one can choosef 2 j5 f j* . While f is real, thev j

and f j are complex, hence the pairing of modes.
Usually, eigenfunction expansions rely on Hermiticity o

the evolution operator, which only holds for closed system
One way out is to embed the cavity into a universe 0<x
<L with a node atx5L→`, and use the MU. Namely,
Eqs. ~2.1!–~2.3! are the restriction tox<a of Eq. ~2.1! on
0<x,`, if r(x.a)51 and f8(x.a,t50)52ḟ(x.a,t
50). However, then one has to deal with a continuu
(Dv;p/L→0) instead of a discrete set of states in th
closed case. Also, the self-contained Eqs.~2.1!–~2.3! show
that even for a damped cavity the~thermo!dynamics can be
studiedwithoutexplicit reference to the outside, which is th
main goal when second quantizing the open system.

A QNM expansion in terms of the cavity variables only
avoiding the disadvantages of the MU and exact for a
amount of damping,doesexist if ~a! r(x5a) has at least a
step discontinuity, demarcating a cavity.~b! r(x.a)51, so
that the outside does not backscatter outgoing waves,
abling its complete elimination. See Ref.@10#, and references
therein.

First, one shows that the retarded Green function has
representation

GR~x,y;t !5(
j

f j~x! f j~y!

2iv j
e2 iv j t ~0<x,y<a,t.0!,

~2.5!

where thef j ’s are normalized as in Eq.~2.8! below. Thus,
the dynamics is contained entirely in the QNMs. Secon
since Eq.~2.1!, as with any Hamiltonian problem, involves
both position and momentum, one introducespairs f

5(f,f̂)T with f̂[rḟ, so that f j5( f j ,2 irv j f j )
T. The

space of all outgoing-wave pairs, satisfying Eqs.~2.2! and
~2.3!, will be denoted asG @14#.

Using these pairs, the time evolution generated by E
~2.5! can be recast in the form

f~ t !5(
j

aj~ t !f j , 2v jaj~ t !5„f j ,f~ t !…, ~2.6!

with aj (t)5aj (0)e2 iv j t and thebilinear mapfor z,xPG

~z,x!5 i H E
0

a1

dx @z~x!x̂~x!1 ẑ~x!x~x!#1z~a!x~a!J .

~2.7!
y,

.

.

y

n-

he

,

.

By letting t↓0 in Eq. ~2.6! one obtains atwo-component
expansion for any fPG, proving completeness of th
QNMs. With

H5 i S 0 1/r

]x
2 0 D ,

Eq. ~2.1! becomesi ] tf5Hf, in analogy with quantum me
chanics. Equation~2.4! for f j then readsHf j5v j f j . Even
though the system is open,H is symmetric: (z,Hx)
5(Hz,x) for any z,xPG. This yields ‘‘orthogonality’’

~ f j ,fk!52v jd jk ~2.8!

by the usual proof, leading to uniqueness of the expans
@Eq. ~2.6! for the first component alone would not b
unique#. In Eq. ~2.8!, we have already implemented the no
malization used in Eqs.~2.5!,~2.6!; in general the right-hand
side ~RHS! is not real, stressing the difference between E
~2.7! and a standard sesquilinear scalar product. The b
earity of Eq.~2.8! also fixes the phase off j .

Instead of as an ‘‘orthogonal’’ expansion using a biline
map, Eq.~2.6! can also be regarded as a biorthogonal exp
sion involving the standard inner product. This becomes u
ful when several QNMs merge@15#; we will only consider
this briefly in Appendix A.

III. ELIMINATION OF THE OUTSIDE

We shall express the generating functional for the cav
field in terms of the QNMs. We want results for finite tem
perature, so a Euclidean formulation is advantageous. S
Eq. ~2.6! involves two components, we must use a pha
space path integral

S$x%5K Tt expH E
0

b

dt „f~t!,x~t!…J L ~3.1!

5Z21E Df~x,t! expH E
0

b

dtF ~f,x!

2E
0

a1L

dxS 1

2r
f̂21

1

2
f822 i f̂ḟ D G J , ~3.2!

with Df[DfDf̂, L→`, andb51/T (\5kB51). By Eq.
~2.8!, the form~2.7! of the coupling of the real@16# sourcex
to the cavity field only~see Sec. I! will be convenient upon
QNM expansion~2.6!. Imaginary-time orderingTt is needed
in Eq. ~3.1!, wheref is an operator, but not in thec-number
formula ~3.2!. Below, the meaning off will follow from the
context. The normalizationZ formally equals the path inte
gral with x °0; in fact both are infinite, only their ratio is
meaningful. In the following we shall cancel a
x-independent factors against their counterparts inZ, without
reflecting this in the notation. The boundary conditions a
f(0,t)5f(a1L,t)50 and, due to the trace implicit in th
expectation~3.1!, f(x,0)5f(x,b). No conditions can be
imposed onf̂, which typically is completely discontinuou
as the action does not containf̂8. This also means tha
phase-space path integrals can be tricky@17,18#. However,
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this in general matters only beyond the semiclassical
proximation, which is exact for our linear problem@19#.

Let us split the integral into a cavity and a bath fact
Z21*Df5Zc

21*Dfc Zb
21*Dfb , where the latter runs ove

fields on (a,a1L) with a given boundary valuef(a,t).
The integral over bath momenta is trivial since it can be do
for each space-time grid point separately; introduc
j[x2a and using r(x.a)51, one is left with

Zb
21*Dfb exp$2Sb%, where Sb5*0

bdt*0
Ldj 1

2 (ḟ21f82).
Expanding fb(j,t)5T(me2 inmt $fm(a)(L2j)/L
1(u51

` fum sin(puj/L)% ~with the Bose frequenciesnm

52pmT, mPZ), one has

Sb5
T

2 (
m

H L2nm
2 13

3L
ufm~a!u21 (

u51

` FL2nm
2 1p2u2

2L
ufumu2

1
2Lnm

2

pu
Re@fumf2m~a!#G J

5
T

2 (
m

H L2nm
2 13

3L
ufm~a!u21 (

u51

` FL2nm
2 1p2u2

2L
uf̄umu2

2
2L3nm

4 ufm~a!u2

p2u2~L2nm
2 1p2u2!

G J , ~3.3!

where f̄um5fum12nm
2 fm(a)/$pu@nm

2 1(pu/L)2#%.

Changing tof̄um does not alter the domain@especially not in
a fm(a)-dependent way# since bothfum and f̄um run over
all C, subject only tofum5fu,2m* and f̄um5f̄u,2m* . Upon
completing the square in Eq.~3.3!, the integral thus yields a
f(a)-independent constant which cancels againstZb :

E Dfb

Zb
exp$2Sb%5expH T

2 (
m

ufm~a!u2F2
L2nm

2 13

3L

1 (
u51

` 2L3nm
4

p2u2~L2nm
2 1p2u2!

G J
5expH 2T(

m

1

2
unmuufm~a!u2J

for L→`, ~3.4!

where to arrive at Eq.~3.4! we used(u51
` u22(11e2u2)21

5p2/62pueu/21O(e2) for e5p/Lnm , leading to the can-
cellation of theO(L) terms in the exponent on the first line

The Caldeira-Leggett type@4# exponent in Eq.~3.4! is the
quantum finite-T equivalent of an Ohmic-damping term. I
emergence is expected, given the correspondence bet
our transmission-line environment@20# and the oscillator
baths used originally@12#: if L→`, waves escaping into th
homogeneous outside string will never be scattered back
that the outside acts as a sink. Since Eq.~2.1! is dispersion-
less, this damping is frequency independent. Classically
yields Eq. ~2.3!, where f8 is precisely the string tension
apparently, this force equals2ḟ. This velocity proportion-
ality is reflected by the first power ofnm in Eq. ~3.4!; how-
p-

:

e
g

en

so

is

ever, unlike Eq. ~2.3!, the action ~3.4! is necessarily
~imaginary-!time reversal invariant.

Substituting Eq.~3.4! back into Eq.~3.2! and using Bose
frequencies also in the cavity, one gets

S$x%5Z21E Dfc expH T(
m

F ~fm ,x2m!2
1

2
unmuufm~a!u2

2E
0

a

dxS 1

2r
uf̂mu21

1

2
ufm8 u22nmfmf̂2mD G J . ~3.5!

This form completes the elimination procedure in that
manifestly involvesfc only.

IV. PERFORMING THE CAVITY-FIELD INTEGRAL
IN THE QNM BASIS

Substituting fm5( jajm f j and xm5( jbjm f j into Eq.
~3.5! @21#, the ‘‘orthogonality’’

E
0

a1

dxr f j f k5d jk2 i
f j~a! f k~a!

v j1vk
, ~4.1!

which follows from Eqs.~2.7! and ~2.8!, leads to

S$x%5Z21E Dfc

3expH T(
jm

ajmF2(
k

ak,2mS̃jkm12v jbj ,2mG J
~4.2!

5Z21E Dfc

3expH T(
jkm

@2ā jmāk,2mS̃jkm2bjmbk,2mh̃ jkm#J .

~4.3!

Here,

S̃jkm5
nm@u~m!vk2u~2m!v j #1 iv jvk

v j1vk
f j~a! f k~a!,

h̃ jkm5F u~m!vk

ivk1nm
1

u~2m!v j

iv j2nm
G f j~a! f k~a!

v j1vk
,

ā jm5ajm1(
k

bkmh̃ jk;2m

v j
,

and u(0)[ 1
2 . In Eq. ~4.2!, the d jk term in Eq. ~4.1! has

canceled bym parity. Thus, it is the second term in Eq.~4.1!
which contributes; this makes Eq.~4.2! nondiagonal~cf. the
double sum( jk). The surface valuesf j (a) f k(a) in S̃,h̃ are a
measure of dissipation, since they would vanish if the fi
had a node also atx5a @22#. Using a basis adapted to th
open system, the free-cavity and damping terms in the ac
of Eq. ~3.5! have been combined nicely in Eq.~4.2!.

The nontrivial ingredient in the completion of the squa
~4.3! is the QNM sum rule
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(
k

S̃jkmh̃kl m

v jvk
5(

k

h̃ jkmS̃kl m

v jvk
5(

k

f j~a! f k
2~a! f l ~a!

~v j1vk!~vk1v l !

52d j l ; ~4.4!

see Eq.~4.8! and further. We thus obtain the final answer f
S$x% in terms of thebjm @23#,
s

he

-
e

h

S$x%5expH 2T(
jkm

bjmbk,2mh̃ jkmJ . ~4.5!

Its relation to the temperature Green functionGjk(t)
52^Tt$aj (t)ak%& reads@24#
]bjm
]bk,2m

S$x%ux505]bjm
]bk,2m

ux50K Tt expH T(
jm

2v jbjmE
0

b

dt e2 inmtaj~t!J L
54v jvkT

2E
0

b

dt1dt2 einm(t22t1)^Tt$aj~t1!ak~t2!%&524v jvkTG̃jk,2m , ~4.6!
the

in
n is
where it is a standard result of path integration@25# that
differentiation ~in our case ordinary partial differentiation
with respect to thediscreteset$bjm%) of S$x% automatically
yields time-ordered expectation values@see below Eq.~3.2!#.
Substituting Eq.~4.5! into Eq. ~4.6!, one obtains

2v jvkG̃jkm5h̃ jk;2m . ~4.7!

Quite generally, G is related to the real-timeGjk
R (t)

52 iu(t)^@aj (t),ak#& by G̃jkm5G̃jk
R ( inm) for m>1 @26#.

Evaluating the analytically continuedG̃jk
R at the frequencies

inm , Eq. ~4.7! thus is readily seen to agree exactly with t
results found in Ref.@9# by canonical quantization.

Equation~4.4! will now be derived. Expanding into par
tial fractions if j Þl , one sees that the sum indeed vanish
if (k f k

2(a)/(vk1v j ) is independent ofj. This follows from

(
k

f k
2~a!

vk1v j
5(

k

f k
2~a!

vk
12v j G̃

R~a,a;2v j !

5(
k

f k
2~a!

vk
1 i , ~4.8!

where the last step is valid because more generally one

2v j f j~a!G̃R~x,a;2v j !5 i f j~x!. ~4.9!

For a proof, letv→2v j in the purely classical identity

G̃R~x,y;v!2G̃R~x,y;2v!

5
2v

i
G̃R~x,a;v!G̃R~y,a;2v!
s

as

@9#, and compare residues on both sides. The value of
first term on the RHS of Eq.~4.8! is irrelevant for the deri-
vation of Eq.~4.4!; in Appendix B it will be shown that, if
r(x5a) has a step, (k f k

2(a)/(vk1v j )5 i @r(a2)
11#/@r(a2)21#.

For j 5l , we need 2(k f k
2(a)/(vk1v j )

2

52]v@vG̃R(a,a;v)#v52v j
. With f (v) @g(v)# solving Eq.

~2.4! ~with v j°v) under the left~right! boundary condition
only, one has

G̃R~x,y;v!5
f ~x,v!g~y,v!

W~v!
, ~4.10!

where one can choosef (v)5 f (2v), and with W5 f g8
2g f8 the position-independent Wronskian off and g @10#.
Together with the OWC forf (v j )5 f j and g, Eq. ~4.10!
yields

4v j f j~a!]v@vG̃R~a,a;v!#v52v j

5 iv j]v f ~a,v j !1 i f j~a!2]v f 8~a1,v j !. ~4.11!

If v j were a double QNM@15#, i.e., if f satisfied the OWC up
to O(v2v j ), the RHS would vanish. However, except
Appendix A we assume simple poles, so further evaluatio
needed. Solve@]x

21rv2#]v f uv j
522v jr f j by varying the

constant,]v f uv j
5hj f j , leading to
hj8~x! f j
2~x!522v jE

0

x

dyr~y! f j
2~y!⇒hj8~a1!5

i 2~ f j , f j !

f j
2~a!

⇒ iv j]v f ~a,v j !1 i f j~a!2]v f 8~a1,v j !5
~ f j , f j !

f j~a!
;

since Eq.~4.11! vanishes for a double QNM one could have expected an answer}(f j , f j ) @15#, which here equals 2v j .
Substition into Eq.~4.11! yields
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2]v@vG̃R~a,a;v!#v52v j
5 f j

22~a!, ~4.12!

completing the proof of the sum rule~4.4! and therefore of
Eq. ~4.3!.

V. ONE-COMPONENT FORMS

The canonical analysis@9# suggests thatS$x% also has a
diagonal form~see Appendix C! if x couples only to the first
componentf. In this section we thus setx50, and consider
S$x̂%. Then Eq.~4.4! implies (k@ f j (a) f k(a)/(v j1vk)#bkm
52 ib jm , at once yielding

S$x̂%5expH T(
jm

bjmbj ,2m

v j

v j2 i unmuJ . ~5.1!

However, thef j are overcomplete for the one-compone
expansion ofx̂, so thebjm are no more independent, se
above Eq. ~5.1!. It is thus better to write outbjm

5( i /2v j )*0
a1

dx fj x̂m :

S$x̂%5expH 2T(
jm

E
0

a1

dxdyx̂m~x!x̂2m~y!

3
f j~x! f j~y!

4v j~v j2 i unmu!J ~5.2!

5expH T(
m

E
0

a1

dxdy
1

2
x̂m~x!x̂2m~y!G̃m~x,y!J . ~5.3!

While it looks simple, Eq.~5.3! @in particular the form~5.2!
of G̃# is hard to derive from Eq.~3.5! without using the
power of the two-component expansion in the intermed
steps, see below Eq.~5.5!. Using Eq. ~5.2! for S$x̂%
5^Tt exp$i*0

bdt*0
a1

dx x̂(x,t)f(x,t)%&, f-f correlators follow

by functional differentiation with respect tox̂, without the
problems of Eq.~5.1!.

Also the effective cavity action has a diagonal form, po
sibly useful when, e.g., numerically studying an interact
extension~see Ref.@9#, Secs. VI and VII!. Integrating outf̂
if x50,

S$x̂%5Z21E Dfc expH T(
m

F E
0

a1

dxS ifmx̂2m

2
1

2
rnm

2 ufmu22
1

2
ufm8 u2D2

1

2
unmuufm~a!u2G J

5Z21E Dfc expH T(
jm

ajmF2v jbj ,2m

2(
k

ak,2mS nm
2 1v j

2

2
d jk

1 i
~v j2 i unmu!~vk2 i unmu!

2~v j1vk!
f j~a! f k~a! D G J .

~5.4!
t

e

-

The ajm are now given by ajm5 1
2 *0

a1
dxrfm f j

1( i /2v j )fm(a) f j (a)5(1/2v j
2)*0

a1
dxfm8 f j8 , implying

(k@vk /(v j1vk)# f j (a) f k(a)akm52 iv jajm . Also using
( j f j

2(a)/v j
252a @see Eq. ~B2!# and fm(a)f2m(a)

52 i (fm ,f2m)522i ( jv jajmaj ,2m , S$x̂% can be written
as

S$x̂%5Z21E Dfc expH T(
jm

ajm@2v jbj ,2m2aj ,2ma jm#J ,

~5.5!

with a jm5nm
2 1v j

22 iv j (unmu1anm
2 ). The ajm are no more

independent@see Eq.~5.1!# as, up toajm5a2 j ,2m* , they were
in Sec. IV. Thus, evaluating Eq.~5.5! directly is difficult, and
Eq. ~5.1! is best obtained via the auxiliary fieldf̂ as before.
One can again write out theajm :

S$x̂%5E Dfc

Z
expH T(

m
E

0

a1

dxF ifmx̂2m

2E
0

a1

dyfm8 ~x!f2m8 ~y!(
j

a jmf j8~x! f j8~y!

4v j
4 G J .

~5.6!

VI. DISCUSSION

As mentioned in Sec. I, this work in a sense compleme
@4,12# for the field models~2.1!–~2.3!. Comparing Secs. IV
and V clarifies why phase-space integration is essentia
Eq. ~3.2!. Another typical feature of our dissipative system
the nontrivial step needed to proceed from Eq.~4.2! to ~4.3!
and thus to Eq.~4.5!. Also, the analysis of Refs.@8,9# has
now been extended to critically damped excitations—
Jordan-block modes of Appendix A.

By path-integral quantizing the open wave system,
have met the challenge set out in Ref.@9#. This leaves that
paper’s second challenge: the inclusion of matter@27#. For
interactions confined to the cavity, the elimination offb in
Sec. III is not affected; one simply has an extra term in
exponent of Eq.~3.5!. Section IV contains two steps~see
Sec. I!: the first, QNM expansion of the effective actio
goes through for any interaction since the QNMs are co
plete. One obtains a generalization of Eq.~4.2!, and any fur-
ther analysis now benefits from the discrete basis. While
second step of exact evaluation will typically be impossib
by settingajm°]/](2v jTbj ,2m) in the interaction term one
can writeS$x% as a functional of the freeS0$x% of Eq. ~4.5!
@25#. With a toy actionSint5*0

bdt*0
adxl(x)f4(x,t), we get

S$x%5Z21expH 2b (
m1 . . . m4

dm11•••1m4

3 (
j 1 . . . j 4

l j 1 . . . j 4)i 51

4
1

2v j i

]

]bj imi
J S0$x%, ~6.1!

with l j 1 . . . j 4
5*0

adxl f j 1
••• f j 4

. This form is useful when
doing perturbation theory.
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The final result~4.5! can also be found indirectly eve
without using the canonical theory: its kernel~4.7! is the
analytic continuation ofG̃jk

R (v). The Gjk
R (t) are the unique

QNM coefficients ofGR(x,y;t)52 iu(t)^@f(x,t),f(y)#&,
obtainable by trivial time differentiations from its~1,1! com-
ponent, the latter being the classical propagator~2.5! ~see
Ref. @9#, Secs. III and VI B, and Appendix C! @28#. Yet, the
present explicit path integration is of considerable intere
since so few of them can be done in closed form unless t
trivially factorize into ordinary integrals over NMs. Also, th
calculation has uncovered new results on QNMs—e.g.,
~4.4!—which are useful already on the classical level.
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APPENDIX A: JORDAN-BLOCK PATH INTEGRAL

In the main text we have assumed that all poles inG̃R(v)
are simple@cf., e.g., the Fourier transform of Eq.~2.5!#. Here
we study the general case, following Ref.@15# throughout
@29#. For each QNM pole of orderM j in G̃R(v) at v5v j ,
introduce f j

n(x)5(n!) 21]v
n uv j

f (x,v) for 0<n<M j21,

with f (x,v) defined above Eq.~4.10!. The conjugate mo-
menta read

f̂ j
n52 ir@v j f j

n1 f j
n21# ~A1!

( f j
n[0 for n<21), so thatf j

05f j is the QNM eigenvector,
which together with$f j

n%n51
M j 21 spans a so-called Jordan bloc

of the HamiltonianH of Sec. II.
One main result of Ref.@15# now reads: if one choosesf

andg such that, for allj,

g~x,v!5 f ~x,v!1O@~v2v j !
M j #,

~A2!

W~v!52v j~v2v j !
M j1O@~v2v j !

2M j #

~note the orders of the errors!, which is readily achieved, on
has the biorthogonality relation

~ f j
n , f k

r !52v jd jkdn1r ,M j 21 ~0<n<M j21,0<r<Mk21!.
~A3!

Expanding fm5( jn8 ajm
n f j

n and xm5( jn8 bjm
n f j

n ((n8

[(n50
M j 21) in Eq. ~3.5!, the term withf j

n8 can again be inte-
grated by parts, using@]x

21rv j
2# f j

n52r@2v j f j
n211 f j

n22#

and the OWCf j
n8(a1)52 f̂ j

n(a1). In general,*0
a1

dxr f j
nf k

r

is not reduced to surface terms by Eq.~A3! in one step as in
Eq. ~4.1!, because of the second term in Eq.~A1!; iteration
leads to
t,
y

q.

nu-
-
g

E
0

a1

dxr f j
nf k

r 5
d jku~n1r 1 3

2 2M j !

~2v j !
n1r 112M j

1 i (
p50

n

(
q50

r S p1q

p D f j
n2p~a! f k

r 2q~a!

~2v j2vk!
p1q11

~A4!

5
d jku~ n1r 1 3

2 2M j!
~2v j !

n1r 112M j

2 i
]v

n uv j

n!

]m
r uvk

r !

f ~a,v! f ~a,m!

v1m
, ~A5!

where the definition off j
n above Eq.~A1! shows that Eq.

~A5! equals Eq.~A4!. Compact forms such as Eq.~A5! will
be essential below. Comparing the second terms on t
respective RHSs, Eq.~A5! is seen to be a differentiated ve
sion of Eq.~4.1!. However, Eq.~A5! depends on Eq.~A2!.
One obtains

S$x%5Z21E Dfc expHT( 8
jnm

ajm
n F2( 8

kr
ak,2m

r S̃jkm
nr

12v jbj ,2m
M j 212nG J , ~A6!

S̃jkm
nr 5

]v
n uv j

n!

]m
r uvk

r !
f ~a,v! f ~a,m!

3
nm@mu~m!2vu~2m!#1 ivm

v1m
. ~A7!

The first term of Eq.~A5! cancels inS̃, see below Eq.~4.3!.
We claim that the result of Eq.~A6! is

S$x%5expH 22T ( 8
jknrm

v jvkbjm
n bk,2m

r G̃jk;2m
M j 212n,Mk212r J ,

~A8!

G̃jkm
nr 5

]l
M j 212nuv j

~M j212n!!

]m
Mk212r uvk

~Mk212r !!

f ~a,l! f ~a,m!

2v jvk~l1m!

3H u~m!l

il1nm
1

u~2m!m

im2nm
J . ~A9!

To verify this claim, it suffices to show that@23# U j l m
nu

[(kr8 S̃jkm
nr G̃l km

ur 52 1
2 d j l dnu5(kr8 S̃k jm

rn G̃kl m
ru ; since S̃jkm

nr

5S̃k j ;2m
rn and G̃jkm

nr 5G̃k j ;2m
rn , these two relations are equiva

lent. To evaluateU j l m
nu , first for nm.0, substitute Eqs.~A7!

and ~A9!, doing ( r8 by the product rule:

U j l m
nu 5

]v
n uv j

n!

]l
M l 212uuv l

~M l 212u!!

nm1 iv

nm1 il

l

v l

3 f ~a,v! f ~a,l!(
k

]m
Mk21uvk

~Mk21!!

m f ~a,m!2

2vk~m1v!~m1l!
.

~A10!
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Rewriting m/@(m1v)(m1l)#5@v/(m1v)2l/(m1l)#/
(v2l) in Eq. ~A10!, one recognizes@15#

G̃R~x,y;z!5(
k

]m
Mk21uvk

~Mk21!!

f ~x,m! f ~y,m!

2vk~z2m!
. ~A11!

Replace Eq.~A11! by Eq. ~4.10!, and in the latter use
f (v)5 f (2v) to write G̃R(x,a;2v)52 f (x,v)/
@ f 8(a1,v)1 iv f (a,v)#. With f 8(a1,v)5 iv f (a,v)
22v j (v2v j )

M j / f (a,v)1O@(v2v j )
2M j # @see Eq.~A2!#,

this leads to

vG̃R~x,a;2v!5
i f ~x,v!

2 f ~a,v!
1

v j f ~x,v!~v2v j !
M j

2v f 3~a,v!

1O@~v2v j !
2M j #, ~A12!

generalizing both Eqs.~4.9! and~4.12!. The error term of Eq.
~A12! does not contribute in Eq.~A14! below, and from now
on will be omitted. Substituting Eq.~A12! @with x°a, and
(v, j )°(l,l ) in the second partial fraction above E
~A11!# into the upshot of Eq.~A10!, one finds

U j l m
nu 5

]v
n uv j

n!

]l
M l 212uuv l

~M l 212u!!

3
nm1 iv

nm1 il

l

v l

f ~a,v! f ~a,l!

v2l

3Fv l ~l2v l !M l

2l f 2~a,l!
2

v j~v2v j !
M j

2v f 2~a,v!
G . ~A13!

This vanishes ifj Þl , since then (v2l)21 is regular while
n<M j21 andu>0. If j 5l , in the first term of Eq.~A13!
use (nm1 iv) f (a,v)/@(nm1 il) f (a,l)#511O(v2l); the
error term does not contribute as it cancels (v2l)21, upon
which (l2v j )

M j yields zero in the final differentiation
Handling the second term of Eq.~A13! analogously, one is
left with

U j jm
nu 5

]v
n uv j

n!

]l
M j 212uuv j

~M j212u!!

~l2v j !
M j2~v2v j !

M j

2~v2l!

52
1

2

]v
n uv j

n!

]l
M j 212uuv j

~M j212u!!

3( 8
p

~v2v j !
p~l2v j !

M j 212p

52
1

2
dnu , ~A14!

proving our claim fornm.0; nm<0 is similar, but factors
with nm cancel from the outset.
For a check on the algebra and a closer look at the
usual Jordan-block excitations, comparison with canon
quantization is instructive. Expand the Heisenberg fi
fc(t)5( jn8 aj

n(t)f j
n ; the operatorsaj

n satisfy a coupled~for
differentn) system of Langevin equations@8,9#, from which
they may be solved in terms of the thermal and quant
noise incoming from the outside, having a simple Plan
distribution ~we omit the details!. Since Gjk

Rnr(t)

52 iu(t)^@aj
n(t),ak

r #& turns out to be related to theG̃ of Eq.
~A9! as below Eq.~4.7!, the path integral and canonical ap
proaches indeed agree for arbitrary QNM pole configu
tions.

APPENDIX B: QNM SUM RULES

In Ref. @10#, ( j f j (x) f j (y)/v j50 (( j[ limM→`( j 52M
M )

follows from GR(x,y;t50)50 in Eq.~2.5!. However, point-
wise this only holds ifxÞy. Settingr(x)5r f(x)1md(x2a)
with finite r f , countour integration ofG̃R(v) in the upper
half v-plane~only the large semicircle contributes, on whic
one can use WKB methods@30#! gives GR(x,x;0)5
2 1

2 @n(x2)1n(x1)#21 (n[Ar) if x,a or m50, while
GR(a,a;0)50 if m.0. This agrees with a real-time analys
showing that GR(x,x;01)52@n(x2)1n(x1)#21

@GR(a,a;01)50, m.0# while of course GR(t502)50.
Now integrateG̃R in the lower half plane; comparison yield

(
j

f j~x! f j~x!

v j
5H 0, 0<x,a or m.0,

2i /@r~a2!21#, x5a,m50,
~B1!

leading to the result for Eq.~4.8! quoted below Eq.~4.9! if
m50; for m.0,(kf k

2(a)/(vk1v j )5 i .
For another sum, solve the trivial differential equation f

G̃R(v50). One finds

(
j

f j~x! f j~y!

v j
2

522G̃R~x,y;0!52min~x,y!

~0<x,y<a!. ~B2!

Clearly, ]x
2~B2! reproducesr(x)( j f j (x) f j (y)52d(x2y)

for 0,x,y,a @10#. Forr(x,a)5const, Eqs.~B1! and~B2!
become conventional Fourier series@9#.

APPENDIX C: DIAGONAL TWO-VARIABLE QNM
EXPANSION

Motivated by ‘‘diagonal’’ series such as Eqs.~5.2! and
~5.6! ~also found in Ref.@9#!, we study theone-component
expansion

f~x,y!5(
j

aj f j~x! f j~y! ~C1!
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for symmetric f: @0,a#2→C. Since @r21(x)]x
2

2r21(y)]y
2#f(x,y)50, f is determined by a set of bound

ary conditions specifying a unique solution to a hyperbo
equation. Hence,$ f j (x) f j (y)% is grossly undercomplete in
the space of functions on 0<x<y<a. However, the expan
sion ~C1! is unique if ( j aj converges absolutely. For
proof, supposef50, i.e.,

(
j

aj f j~x! f j~y!50. ~C2!

Operating on~C2! with *0
a1

dx r(x) f k(x) shows that@g jk

[d jk2 i f j (a) f k(a)/(v j1vk)#

(
j

aj f j~y!g jk50, ~C3!

while 2 i ]y~C3!ua2 yields

(
j

aj~v j2 imv j
2! f j~a!g jk50 ~C4!
s.

s

s

ys

in
l
d-

nd

M

ld

nt
~see Appendix B form) and2r21(a2)]y
2~C3!ua2 gives

(
j

ajv j
2f j~a!g jk50. ~C5!

Finally, vk~C3!uy5a1~C4!1 im~C5!1 i f k(a)~C2! x5y5a
reads

2vkf k~a!ak50 ⇒ ak50. h ~C6!

The summability of$aj% enables takingy↑a behind( j to
arrive at Eqs.~C4!–~C6!: for m.0,g jk5O( j 22) and this is
multiplied at most withajv j

2f j (y) where f j (y) is bounded.
Hence,( j converges uniformly with respect toy. If m50,
g jk5O( j 21), but now the prefactor is at mostajv j f j (y)
since Eq.~C5! is not needed. While we have not exhau
tively examined slowly converging or distributional seri
~C1!, the above suggests strongly that the only freedom t
is the addition ofc/v j to aj if m.0; since we also suppose
convergenceat x5y5a, by Eq. ~B1! even this freedom is
absent ifm50 ~step discontinuity!.
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